Name:

Period:

Seat#:

Worksheet #7

2) III F	If the temperature of a 50.0 gram block of aluminum increases by 10.9K when heated by 500 Joules, calculate the speci heat of the aluminum block and the molar heat capacity of the aluminum block. <u>0.917 J/g°C, 24.8 J/mol°C</u>
3) ⊺	The specific heat of gold is 0.128 J/g•K. Calculate the molar heat capacity. <u>25.21 J/mol•K</u>
4) (r	Calculate the amount of heat necessary to melt 27 grams of ice if the molar heat of fusion of ice is 6.009 kJ/mol. Use the molar heat value given here (not regular latent heat in grams), and get your answer in kJ. <u>9.01 kJ</u>
5) Ii	If the molar heat capacity of Magnesium is 24.89 J/mol•K, calculate the energy required to heat 35 grams of magnesium from 30°C to 55°C. <u>895.9 J</u>

~				
6)	B ₂ O ₃ a. Is	+ $3H_2O \rightarrow 3O_2$ · this reaction end	$3_2H_6 \qquad \Delta H = +2035 \text{ kJ}$ or exothermic?	
	b. Re	write the equation	n with the heat written as a reactant or a product based on your answer	to part A
	c. Ho	w much energy	s involved when 15 grams of B_2O_3 is reacted, and is it absorbed or releases involved when 15 grams of B_2O_3 is reacted, and is it absorbed or releases to the set of th	ased? <u>436.6 kJ</u>
7)	If the of the	∆Hrxn for the cc fuel is combust	bustion of tetracarbon decahydride is -5756 kJ/mol _{rxn} , how much enero	gy is released when 50 gr
8)	CH₄ +	$2\Omega_2 \rightarrow C\Omega_2 + 2$	$I_2O \Delta H^\circ = -890.4 \text{ k.l/mol}_{res}$	
	a. Ho	w much energy	given on when 2.50 mol of CH4 are burned? -2226 kJ	
	b. How	r much energy is	released when 22.4 g of O_2 are consumed while excess CH4 is burned'	? <u>-311.64 kJ</u>
9) to in m	FORM terestee ooles of	Sometimes you of each of the che d in! $\Delta H^{\circ}_{rxn} = \Delta H^{\circ}_{rxn}$ each product an	n't know what the heat of reaction is for a given equation. BUT if you know the heat of reaction, then you can figure out what the heat of reaction is formation Products - $\Delta \mathbf{H}^{\circ}$ formation Reactants Don't forget you want to take the reactant in the balanced equation!	now how much energy it t s for the equation you are ke into account the numb
	a. C	alculate the ΔH H ₄ + 2O ₂ \rightarrow CC	$_{m}$ for the combustion of methane using the "Heats of Formation" given t + 2H ₂ O	below. <u>-890.36 kJ</u>
		<u>Substance</u>	$\Delta \underline{H}_{f}$ (kJ)	
		CH ₄	-74.80	
		•		
		O_2	0	
	-	CO ₂	-393.50	
	-	O_2 CO_2 H_2O	0 -393.50 -285.83	

10) Ethanol is used as an additive in many fuels today. What is t $2C_2H_5OH + 6O_2 \rightarrow 4CO_2 + 6H_2O$	he ΔH°_{rxn} for the combustion of ethanol? <u>-2470. kJ</u>
Formula Δ <i>H</i> ^o _f	
C ₂ H ₅ OH (<i>I</i>) –277.6	
$CO_2(g)$ –393.5	
$H_2O(g)$ –241.8	
H ₂ O (<i>I</i>) –285.8	
11) What would ΔH° be for the reverse of the reaction below? SrO (s) + CO ₂ (g) → SrCO (s) ΔH° = -234 kJ/mol	12) What would ΔH° be for double the reaction below? SrO (s) + CO ₂ (g) → SrCO (s) ΔH° = -234 kJ/mol
13) Find ΔH° for the reaction below, using the steps provided. <u>-5</u> 2 NO _{2 (g)} \Rightarrow N ₂ O _{4 (g)}	<u>18 kJ</u>
1. $N_{2(g)} + 2 O_{2(g)} \rightarrow 2 NO_{2(g)}$ $\Delta H^{\circ} = 67.7 \text{ kJ}$	
14) Find ΔH° for the reaction below, using the steps provided. <u>18</u> 2C (s) + 2 H ₂ O (g) \rightarrow CH ₄ (g) + CO ₂ (g)	<u>5.3 kJ</u>
1. $C_{(s)} + H_2O_{(g)} \rightarrow CO_{(g)} + H_{2(g)}$ $\Delta H^\circ = 131.3 \text{ kJ}$	
2. $CO_{(g)} + H_2O_{(g)} \rightarrow CO_{2(g)} + H_{2(g)} \Delta H^\circ = -41.2 \text{ kJ}$ 3. $CH_4_{(g)} + H_2O_{(g)} \rightarrow 3H_2_{(g)} + CO_{(g)} \Delta H^\circ = 206.1 \text{ kJ}$	
15) Find ΔH° for the reaction below, using the steps provided. <u>-3</u> A + B \rightarrow C	<u>10 kJ</u>
1. $2A \rightarrow 2D$ $\Delta H^{\circ} = 110 \text{ kJ}$	
2. $D + B \rightarrow C \Delta H^\circ = -85 \text{ kJ}$	

BOND ENERGIES – use this table to perform any calculations.

Average Bond Enthalpies (kJ/mol)							16) Fill in the blanks.		
Single	Bonds								
C-H C-C C-N C-O C-F C-Cl C-Br C-I C-I	413 348 293 358 485 328 276 240 259	N—H N—N N—O N—F N—Cl N—Br H—H	391 163 201 272 200 243 436 567	0-H 0-0 0-F 0-Cl 0-I S-H S-F	463 146 190 203 234 339 327 253	F—F Cl—F Cl—Cl Br—F Br—Cl Br—Br	155 253 242 237 218 193	It energy to break bonds It energy to form bonds Breaking bonds is	
Si—H Si—Si Si—C Si—O	323 226 301 368	H—Cl H—Br H—I	431 366 299	S—Br S—S	218 266	I—Cl I—Br I—I	208 175 151	Forming bonds is	
$ \begin{array}{c} Multiple C=C \\ C=C \\ C=N \\ C=N \\ C=0 \\ C=0 \end{array} $	e Bonds 614 839 615 891 799 1072	N=N N≡N	418 941	O ₂ S=O S=S	495 523 418			Breaking bonds has a algebraic sign for ΔH° Forming bonds has a algebraic sign for ΔH°	

17) Find ΔH° for the formation of water. 2 H₂ + O₂ \rightarrow 2 H₂O -482 kJ H – H H – O – H + 0=0 → H – H H - O - H**18)** Find ΔH° for the combustion of methane. $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ <u>-808 kJ</u> $\begin{array}{cccc} H & O = O & H - O - H \\ H - C - H & + & \rightarrow & O = C = O & + \\ H & O = O & H - O - H \end{array}$ **19)** Find the ΔH° for the reaction: $CH_4 + CI_2 \rightarrow CH_3CI + HCI$ <u>-104 kJ</u> **20)** Find the ΔH° for the reaction: <u>-208 kJ</u> $__CH_4 + _Cl_2 \rightarrow _CH_2Cl_2 + _HCI$

Average Bond Enthalpies (kJ/mol)									
Single Bonds									
с—н	413	N—H	391	0—н	463	F-F	155		
C-C	348	N—N	163	0-0	146				
C-N	293	N-O	201	O-F	190	Cl—F	253		
с—о	358	N—F	272	0-C	l 203	CI-CI	242		
C-F	485	N—Cl	200	0—I	234				
C-Cl	328	N—Br	243			Br-F	237		
C—Br	276			S—H	339	Br-Cl	218		
C-I	240	H—H	436	S-F	327	Br—Br	193		
C-S	259	H—F	567	S-Cl	253				
		H-Cl	431	S—Br	218	I-Cl	208		
Si—H	323	H—Br	366	s—s	266	I—Br	175		
Si—Si	226	H—I	299			I—I	151		
Si-C	301								
Si—O	368								
Multip	e Bonds								
C=C	614	N=N	418	O2	495				
C≡C	839	N≡N	941						
C=N	615			S=O	523				
C≡N	891			s=s	418				
C=0	799								
C≡0	1072								